AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

JAROSLAV KADLEC

2KSYS

 \bigcirc

2KSYS

• History

- Founded in 2015 as a start-up company
- First projects oriented to custom HW design and SW development for microcontrollers
- 2017 designed Control electronic for Combustion Engine in JetSurf
- 2018 moved to TITC Technology Innovation Transfer Chamber
- 2018 first SW within AUTOSAR standard

• Main customers:

©INTRODUCTION - HISTORY OF AUTOMOTIVE

Increasing complexity of functions More and more distributed development ▶ Rising liability risks, such as security and safety

Source: Automotive Software Architectures: An Introduction 1st ed. 2017 Edition by Miroslaw Staron

Mobility services

er-by-wire

Brak

Autonomous driving v-wire

Connectivity, Vehicle2X

©INTRODUCTION - HISTORY OF AUTOMOTIVE

- 1970 1 ECU, 1 software
- 1990 Distributed software
- 2002 Advanced Driver Support, Adaptive Tempomat, Emergency breaking, introduced AUTOSAR
- 2007 SW size measured in megabytes
- 2010 C2X communication, autonomous driving, 10 million lines of code*
- 2016 SW size measured in gigabytes
- today
 - 150 million lines of code*
 - Modern vehicles have more than 50 ECUs
 - Premium cars having more than 100 ECUs
 - Some functions, such as engine control or dynamics, are hard real-time functions, with reaction times going down to a few milliseconds
 - Practically all other functions, such as infotainment, demand at least soft real-time behaviors.

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

*McKinsey&Company Report Feb'18 'Rethinking car software and electronic architecture'

[©] FUTURE TRENDS IN AUTOMOTIVE

• e-Mobility

• Connectivity and cooperation, IoT, Weareables

- Autonomous functions
- Shared cars
- Big data
- C2X
- Cloud technologies
- Security
- Safety

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

*Source: VECTOR - Why AUTOSAR V0.1 | 2019-07-09

TRENDS IN AUTOMOTIVE SOFTWARE DEVELOPMENT

• Heterogenity of software

- from highly safety-critical
- up to infotainment
- Distribution of development OEMs and suppliers
- Distribution of software number of ECUs, need of coordinate SW distribution, OTA SW updates
- Variants and configurations different requirements on the same car in different countries
- Unit-based cost models competitive market pushes unit prices of all components down
- Other trends
 - speed of SW development
 - data-driven development
 - ecosystems

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

ORGANIZATION OF AUTOMOTIVE SOFTWARE SYSTEMS

 Each automotive area has its own requirements for computational speed, reliability, security, safety, flexibility, and extensibility

• Past

 Each car manufacturer developed its own way of organizing software systems

7

- Common signs
 - Similar organization of the electrical and SW systems
 - V development model

• Now

- High effort in creation Common and standardized architecture
 - This resulted in AUTOSAR

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

^oAUTOSAR

AUTOSAR - AUTOmotive Open System ARchitecture
Improve software quality and reduce costs by RE-USE
Re-use of functions across carlines and across OEM boundaries
Re-use of development methods and tools
Re-use of basic software

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTIC

HARDWARE / SOFTWARE PLATFORMS

PAST

- Many different hardware platforms are used
 - Embedded systems traditionally do not support full hardware abstraction
 - Limited modularity of the software
- Poor reusability: Software must often be rewritten from scratch when hardware (processor type) is changed
- Variability: Suppliers have to support a large variety of OEMs and vehicle platform variants with their software

NOW

- Serviceability over the entire product life cycle
 - Software updates and upgrades over the entire life of a vehicle
- Abstraction of hardware from software, making development more flexible.
- Shift development activities from implementation to configuration
- Improvement in software **quality** by standardized BSW
- **Competition** is focused onto OEM-relevant features
- **Reusability** of functions across vehicle networks and across OEM boundaries.

Source: VECTOR - Why AUTOSAR V0.1 | 2019-07-09

OAUTOSAR PARTNERSHIP

Source: VECTOR - Why AUTOSAR V0.1 | 2019-07-09

HISTORY

2002-08	2006-05	2007-03	2008-05	2008-09	2009-12	Future
۲ Initial	Release 2.0	Release 2.1	Release 3.0	Release 3.1	Release 4.0	Maintenance
discussions	90 files	120 files		141 files	183 files	existing Releases

- AUTOSAR 2.0
 - specifications on components (BSW and RTE)
- AUTOSAR 2.1
 - includes specifications on development methodology and templates
 - first descriptions for application interfaces (body and interior electronics)

AUTOSAR 3.0

- > 20 compositions from the body, powertrain, and chassis domain
- Specifications of standardized application interfaces (powertrain, chassis domain)
- harmonized the concept for wakeup of ECUs and startup of networks
- state managers for the bus systems CAN, LIN, and FlexRay added

• AUTOSAR 3.1

• OBDII (new revisions of the DCM, DEM, FIM specifications,...)

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

Source: VECTOR - Why AUTOSAR V0.1 | 2019-07-09

HISTORY

2009-12	2011-04	2011-05	2012-01	2012-06	2013-03	2014-10	2014-07	
Release 4.0	Release 4.0	Release 3.2	Release 4.0	Release 3.2	Release 4.1	Release 4.2	Release 4.2	Future
Rev1	Rev2	Rev1	Rev3	Rev2	Rev1	Rev1	Rev2	Maintenance
							e	existing Releases

AUTOSAR 4.0 Rev1 (2009-12)

- Functional Safety (Memory Partitioning, Time Determinism, Program Flow Monitoring, E2E, BSWM Defensive Behavior, Dual μC, E-Gas Monitoring)
- Architectural Improvements (Error Handling, Multi Core, Boot loader Interaction)
- RTE enhancement (Triggered Events, Integrity and Scaling at Ports, API Enhancement)
- COM (LIN 2.1 Spec, FR 3.0 Spec, FlexRay ISO TP, XCP for ASR, Large Data Types, TCP/IP + Dolp, J1939Tp, TTCAN)
- Functional (NM coordination, ASR Scheduler)
- Conformance Test specifications (CT Specs, only Rev1 and Rev2, but not >Rev2)
- AUTOSAR 3.2 Rev1 (2011-05)
 - Partial Networking
 - Robustness Features (state manager modules)
 - Improvement of error handling (e.g. production vs. development errors)
 - Back-porting of AUTOSAR 4.0 features into AUTOSAR 3.2
 - Parts of the Safety Concept (E2E communication protection)
 - Extended CDD Concept
 - BSW Mode Manager
 - FlexRay ISO TP

Source: VECTOR - Why AUTOSAR V0.1 | 2019-07-09

SW functionality of

the vehicle is

. and mapped

to ECUs

BUS Topology

AUTOSAR

STANDARDIZATION

Application

 \mathbf{O}

Application

Actuator

Sensor

	Application	n Laver	
		,	
	Runtime Enviro	nment (RTE)	
	Basic Softwa	ire (BSW)	

Application Layer

Runtime Environment									
System Services		Memory Services	Crypto Services	Off-board Communication Services	Communication Services	I/O Hardware Abstraction	Complex Drivers		
	Onboard Device Abstraction	Memory Hardware Abstraction	Crypto Hardware Abstraction	Wireless Communication HW Abstraction	Communication Hardware Abstraction				
	Microcontroller Drivers	Memory Drivers	Crypto Drivers	Wireless Communication Drivers	Communication Drivers	I/O Drivers			
Microcontroller									

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

Source: AUTOSAR_EXP_LayeredSoftwareArchitecture 4.4.0

Source: AUTOSAR_EXP_LayeredSoftwareArchitecture 4.4.0

◦ ARCHITECTURE – I/O HW AB

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE

Source: AUTOSAR_EXP_LayeredSoftwareArchitecture 4.4.0

ARCHITECTURE – INTERACTION OF LAYERS

AUTOSAR – AUTOMOTIVE TECHNOLOGY IN PRACTICE Source: AUTOSAR_EXP_LayeredSoftwareArchitecture 4.4.0

SAFE, RELIABLE AND ABOVE ALL FUN. IT'S TIME TO ENJOY!

CALCENT OF ATTENTION

JAROSLAV KADLEC 2KSYS CZECH REPUBLIC KADLEC@2KSYS.CZ

