

FACULTY OF ELECTRICALdepartmentENGINEERINGof telecommunicationsAND COMMUNICATION

Advanced Smart Grids: Utilization of the 5G+ and Cyber Security

Presented by: Petr Číka IMA InfoDay 2022

Praha, November 15, 2022

Outline

- About Department of Telecommunications
- 5G Networks
- BUT/Vodafone UniLab place for research and development in 5G+
 5G and Smart Grids
- (Post)Quantum Cryptography, HW-accelerated cryptography BUT research activities

Department of Telecommunications

- belongs to the largest departments at the faculty
- 80 staff (FTE)
- 61 doctoral students
- IO Study programmes (3 bachelor, 3 master, 4 doctoral)
- 64 R&D projects in 2021 v (4.7 MEUR)

Main R&D Areas

R&D Partners

The Evolution of Mobile Connectivity

1910 – -1

- Lars Magnus Ericsson and his wife used the first car phone.
- **1946 OG**
 - First commercial mobile service (in the US 50 mil coverage)

1983 – 1G

- 1973 The first public cell phone call, 1983 the first commercial cell phone
- 1991 2G
 - Voice calls, message sending (SMS, MMS)
- **2001 3**G
 - Mobile internet, websites are completely redesigned and optimized for the mobile environment (2007 - first iPhone)
- **2008 4**G
 - Data transfer speeds up to 500× faster than 3G
- 2018 5G NR (New Radio)
 - Data transfer speeds up to 20× faster than 4G, IoT, M2M communications

5G Motivation and Vision

5G Motivation

- 5G will address the insatiable demand for mobile broadband
 - Over 60x growth in mobile data traffic from 2013 to 2024
- Aprox. 136 B Gigabytes
 - Monthly global mobile data traffic in 2024
- In 2024
 - Approx. 75% of mobile data traffic from multimedia creation&consumption
 - Approx. 25% of mobile data traffic will be carried by 5G networks

Delivering on the 5G Vision

Where virtually everyone and everything is intelligently connected

Factor

Smart transportati

Public networks

Sources: White-papers and materials by: Qualcomm, Cisco, Nokia, Ericsson, and IBM.

Private networks

Massive lot

Indoor enterprise

Extreme

Broadband

5G Private Network example

Delivering on the 5G Vision

5G is the common connectivity platform

for the IoT

Broad set of devices and services For all spectrum bands¹ and types² Public and private networks

Sources: White-papers and materials by: Qualcomm, Cisco, Nokia, Ericsson, and IBM.

A New Kind of Network to Drive Innovation and Growth

Scaling Down 5G NR for Lower Complexity IoT Devices

Sources: White-papers and materials by: Qualcomm, Cisco, Nokia, Ericsson, and IBM.

Internet of Things

- "The Internet of Things refers to the use of sensors, actuators, and data communications technology built into physical objects".
- IoT enables those objects to be tracked, coordinated, or controlled across a data network or the public Internet.
- There are three steps in Internet of Things applications:
 - Capturing data from the objects (e.g., simple location data or more complex information data sets).
 - Aggregating that information across a data network.
 - Acting on that information taking immediate action or collecting data over time to design process.

5G NR-Light Brings New Efficiencies for the IoT

Lower device complexity

Narrowband operation (down to 10 MHz), single/dual receiver antenna, half-duplex operation

Optimized power consumption

Enhanced low-power modes (PSM and eDRX), lower output power (e.g., 23/20 dBm)

Network enhancements

Coexistence of half- and full-duplex devices, reduced control signaling, small data transmissions Coverage recovery

Repetition and bundling of small payloads, frequency hopping, also use of relay and/or sidelink

Continue to drive IoT expansion as part of 3GPP Release 17

Sources: White-papers and materials by: Qualcomm, Cisco, Nokia, Ericsson, and IBM.

Low-Power Wide-Area Networks

Up to 23dBm (200mW)

Low-Power Wide-Area Networks

10+ years on simple battery

15-70km rural outdoor

Low-Power Wide-Area Networks

2-3km urban indoor

License-exempt

Low-Power Wide-Area Networks

Licensed spectrum

Low-Power Wide-Area Networks

	Sigfox	LoRaWAN	NB-IoT	LTE Cat-M
Coverage (MCL)	162 dB	157 dB	164 dB	155 dB
Spectrum	Unlicensed	Unlicensed	Licensed (LTE)	Licensed (LTE)
Duty cycle limit	Yes	Yes	No	No
TX power restrictions	Yes (25mW)	Yes (25mW)	Yes (200mW)	Yes (200mW)
DL data rates	0.6 kbps	0.3 – 50 kbps	0.5 – 27.20 kbps	< 300 kbps
UL data rates	0.1 kbps	0.3 – 50 kbps	0.3 – 32.25 kbps	< 375 kbps
Max. message size DL	12 B	243 B	1600 B	8188 B
Max. message size UL	8 B	243 B	1600 B	8188 B
Battery life	10+ years	8+ years	10+ years	10+ years
Security	AES-128	AES-128	LTE security	LTE security

LPWA – Communication Infrastructure

NB-IoT / LTE Cat-M1 Deployment In Czech Republic (VF)

NB-IoT – <u>Coverage</u> Czech Republic (02/2022)

#Vodafone Unilab - 5G+ Laboratory at BUT

#VodafoneUniLab (vodafone.cz/unilab)

5G NSA and NB-IoT (NB1, NB2) RRH 800 MHz (band n.20) RRH 1800 MHz (band n.9)

Shield box for the verification of the different radio levels

UniLab Research Activities

- Contributor to 3GPP standards.
- Recent joint research areas:
 - 5G NR communication systems
 - LPWA networks
 - Industry 4.0, SmartGrid infrastructure
 - HW design and prototyping
 - Lab. measurements and benchmarking
 - Advanced field testing

From Research to Production

Smart Metering - NB-IoT a LTE Cat M communication unit

The communication unit is designed for scenarios:

- Smart metering communication module for smart meters or connection to the meter via local interface (RS-485).
- Substation automation communication unit for PQ or universal monitors (connection to ETH interface).

NEW:

- Fulfillment of cyber security requirements according to Annex 4 to Decree No. 359/2020 Coll. + Compliance with recommended NIST and NUKIB.
- Receiver sensitivity better than for LTE and GPRS, suitable for deployment in ambient and "deep indoor" environments.
- Analysis of radio communication (spectrum usage) and communication parameters (sensitivity to threshold signal levels).

NB-IoT a LTE Cat M communication unit

Implementation

deployed in the distribution network

Implementation

Thank you for your attention

Brno University of Technology

Faculty of Electrical Engineering and Communication

Department of Telecommunications

Petr Číka cika@vut.cz

